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Abstract. The ground-state scaling properties of directed paths on a (1+1)-dimensional lattice
are reanalysed. To each bond energy 0 or 1 is randomly assigned with probabilityp or 1− p,
respectively. At variance with previous claims, the result strongly suggests that only one
universality class exists for 0< p < 1, except forp = pc, the directed percolation threshold.

Directed polymers (DPs) in random media [1–3] have been one of the major topics in the
study of disordered systems in the last decade: the universality class of the ground state
has been established in the weak disorder limit, as well as its connections in 1+ 1 space-
time dimensions with other problems such as domain walls in random ferromagnets [3, 4],
the dynamics of growing interfaces governed by the Kardar–Parisi–Zhang (KPZ) equation
[3, 5] and the Burgers equation of fluid motion [6]. Behind the weak disorder universality
class there is always the assumption that the disorder distribution becomes Gaussian in
some hypothetical renormalization group (RG) procedure. However, recently Zhang and
Lebedev [7] devoted some attention to the effects of a bimodal distribution of disorder on
the universality class of DPs. In their model each bondb of a lattice is randomly assigned
an energyEb = 0 (with probabilityp) or Eb = 1 (with probability 1− p). In the ground
state, to each walkW an energyEW is given according to the rule:

EW =
∑
b∈W

Eb (1)

where the sum is over the bonds visited by the path.
On the basis of some numerics, they proposed the interesting conjecture, that there

is a single universality class, different from the weak disorder one, in the whole interval
0< p 6 pc, wherepc is the directed percolation threshold (the 0 energies percolate through
the lattice).

However, invoking universality and using more refined numerical results, we show that,
apart from the single casep = pc, DPs are still in the weak disorder universality class
characterized by the exponentsζ = 2

3 for the transverse wandering fluctuations andω = 1
3

for the ground-state energy fluctuations.
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If p = pc the incipient percolating cluster (IPC) is a fractal, and the polymers share
the same wandering properties of the backbone[7], withζp = 0.6326± 0.0002 [8]. If
p > pc, the polymers lay on the directed percolation cluster, avoiding all the 1-bonds and
there are no energy fluctuations associated with them whereas the entropy, the logarithm
of the number of walks with one extremum fixed, fluctuates with theω exponent. This is
the case studied in [9, 10] where it was shown that the exponents remain the same as in
the weak disorder problem [1]. Belowpc there is no infinite cluster spanning the lattice,
and the polymers necessarily pick up some bonds with energy equal to 1. Lebedev and
Zhang [7] numerically found that the directed percolation universality class also extends for
0 < p < pc. They tried to justify this conclusion by arguing that belowpc the polymers
still see the IPC: the 1-bonds that break its connectedness can be seen as a disorder on it.
Indeed it was numerically shown that polymers forced to live on the IPC, disordered by a
random energy on the allowed bonds, haveζ = ζp [9, 10].

On the other hand, a careful renormalization approach (which can be made exact on
hierarchical lattices) shows that ifp < pc the probability of finding an infinite connected path
of 0-bonds vanishes, increasing the length of the lattice (or, which is somehow equivalent,
performing some coarse graining step). Therefore on long scales the IPC disappears
completely, and the polymers are simply subject to a disordered energy landscape where the
whole lattice is seen by the DP, and not only the IPC. Therefore, based on this argument,
at variance with [7], we expect to find the weak universality class whenp < pc.

This is consistent with [11], where computations on hierarchical lattices of any
(effective) dimension using a bimodal disorder distribution (taking care that the lower
energy do not percolate) have been compared with the(1+ ε)-dimensional expansion with
a Gaussian distribution, showing a perfect agreement.

In order to set out the controversy, we have performed simulations on a square lattice
for times t up to 213 and taking averages over 10 000 realization of the disorder (in general
richer than the statistics in [7]).

The computational technique is a transfer matrix approach to the problem, on a directed
square lattice as in figure 1 where a polymer starting inO does not feel any finite-size
effect. Every bond is assigned an energy that can be either 0 or 1 with probabilitiesp and
1− p respectively. The energy configuration at timet is obtained from the configuration
at time t − 1 according to the rule

Ek(t) = min[Ei(t − 1)+ εik, Ej (t − 1)+ εjk] (2)

wherei andj are the sites at timet −1 from which sitek at timet can be reached,εik(εjk)

Figure 1. Directed lattice used in the simulation. Polymers are chosen with an extremum fixed
in O.
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Figure 2. Wandering of directed polymers forp = 0.3 < pc (squares) andp = pc (circles).
Error bars are smaller than the symbols. The wandering exponents areζ = 0.666± 0.002
(p = 0.3) andζ = 0.633± 0.003 (p = pc) and correspond to the slopes of the shown straight
lines.

is the energy of the bond connecting sitesi (j ) andk. Eventually, the minimum energy is
chosen from the last row (the final time).

The results are shown in figure 2. Data forp = 0.3 < pc clearly show the weak
disorder universality class with a wandering exponentζ = 0.666± 0.002, whereas for
p = pc = 0.6447 the wandering exponent is 0.633±0.003, very close and compatible with
ζp.

These results must be compared with those of [7], where the results forp = pc and
p = 0.35 are shown and those forp = 0.02 are mentioned. Whereas we both agree on the
result forp = pc, our data clearly indicate that forp = 0.3 (close to their valuep = 0.35)
the universality class is the weak disorder one. This result excludes the possibility that the
directed percolation universality class, holding atp = pc, extends down top = 0.02 as
stated in [7]. On the other hand, it does not exclude the presence of another critical point
0.3 < pt < pc such that the universality class is the weak disorder one ifp < pt and
the directed percolation one ifpt < p < pc. Simulations for values ofp closer topc are
unfortunately quite difficult because they are affected by very strong crossover effects and
therefore they cannot be conclusive. However, on the basis of the previously mentioned
theoretical argument we believe that the existence of such peculiar critical pointpt is quite
implausible. To corroborate this conclusion we have directly studied the Lebedev–Zhang
model on a hierarchical lattice (the one drawn in figure 3). In such a lattice the exponentω

(ζ is not defined) can be obtained numerically by applying RG iterations for the probability
distribution [10, 11]. In figure 4 the values ofω that we obtained are plotted versus the
number of RG iterations for three different values ofp (0.1, 0.3, 0.49), which are all below
the percolation threshold for the latticepc = 0.5. For all the three cases, as the number
of iterations increases,ω approaches the value 0.3, which is the one expected for the
universality class of DPs in weak disorder on the hierarchical lattices [10, 11]. These results
again seem to enforce the existence of only one universality class for all the regionp < pc.
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Figure 3. Iterative construction of the hierarchical lattice used for the numerical RG. The
percolation threshold for this lattice isp = 0.5.

Figure 4. Ground-state energy fluctuation exponent on the hierarchical lattice as in figure 3, as
a function of RG iterationsn (the length of the lattice is 2n). Three different values ofp are
considered, as from the legend. The horizontal line represents the value 0.30± 0.01 obtained
in the weak disorder case in [11].

In conclusion, on the basis of numerical simulations and RG arguments, we believe
that DPs with a bimodal distribution of energies are in the same universality class of weak
disorder for all the regionp < pc.

We thank N I Lebedev, S Panzeri, C Vanderzande and Y C Zhang for useful comments.
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